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The properties of infinitesimal disturbances to Poiseuille flow in a circular pipe 
have been found for a wide range of wavenumbers through recent numerical 
work (Salwen & Grosch 1972; Garg & Rouleau 1972). These studies did not, 
however, find the least-damped disturbances. In this paper, the properties of 
disturbances are found in a limiting case. These disturbances are thought to have 
decay rates which are equal to or very close to the smallest value possible for 
any given large value of the Reynolds number R. For disturbances which decay 
in time, the limiting disturbances can be found analytically. They have the pro- 
perty that the axial wavenumber a tends to zero as R + m. The smallest decay 
rate -pi is given by 

where j,, is the first zero of the Bessel function J,. Two modes have this decay 
rate. One is axisymmetric with motion only in the azimuthal direction, and the 
other has azimuthal wavenumber n = 1. For disturbances which decay in space, 
the limiting solutions can be found by numerically evaluating power series. They 
have the property that the frequency /3 tends to zero as R tends to infinity. The 
smallest decay rate ai for these disturbances is given by 

-P,R =j:,l M 14.7, 

a,R M 21.4, 

corresponding to an axisymmetric mode with motion only in the azimuthal 
direction. A mode with azimuthal wavenumber n = 1 has a slightly larger decay 
rate given by 

a, R z 28.7. 

Part 1. Temporally damped disturbances 
1. Introduction 

The problem of the stability of Poiseuille flow in a circular pipe has a long 
history. Experiments by Ekman (1910) and others have shown that, by taking 
sufficient care with entry conditions, the onset of instability can be delayed to 
very high Reynolds numbers (40 000 and more), indicating that Poiseuille flow in 
a circular pipe is stable to infinitesimal disturbances but unstable to disturbances 
of finite amplitude. Stability to  infinitesimal disturbances has not been proved 
rigorously, but the properties of infinitesimal disturbances have now been studied 
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over a wide range of conditions (see Salwen & Grosch 1972), and all found to 
decay [Graebel (1970) found indications to the contrary, but his results are not 
supported by other work, such as that of Burridge (1969) and Salwen & Grosch 
(1972)l. 

Salwen & Grosch (1972) undertook very extensive numerical calculations for 
disturbances whose amplitude changes only with time. They explored the 
stability characteristics of these disturbances for azimuthal wavenumbers 
n = 0, 1,2,  3,4 and 5,  for axial wavenumbers a between 0.1 and 10 and for values 
of rxR up to 50000, R being the Reynolds number. For a given mode with fixed 
a and n, one of two characteristic behaviours is found as R + 00. Either 

(i) the wave speed c, tends to unity and the decay rate -pi satisfies 

-pi R --f B,(aR)t as aR --f co, (1 .1)  

where B,, is a constant, or 
(ii) the wave speed c, tends to zero and the decay rate -pi satisfies 

-P,R --f Fg(aR)+ as aR -+ 00, (1.2) 
where F, is a constant. 
In either case, the decay rate tends to zero as R -+ 00, and Salwen & Grosch 

have determined the coefficients B, and Fg. 
Now consider the dependence of the decay rate -pi on a at a fixed large value 

of R. For both types (1.1) and (1.2) of mode, the decay rate decreases as a de- 
creases until the condition aR > 1 for the validity of (1 .1)  and (1.2) is violated. 
Salwen'& Grosch did not calculate solutions for a < 0.1 and so did not find the 
least -damped disturbance. 

The results of this paper are based on earlier experience (Gill 1965) with 
spatially damped misymmetric modes. For a fixed frequencyp these modes showed 
behaviour as R -+ 03 similar to the behaviour given in (i) or (ii) above. Those with 
wave speed tending to unity (corresponding to (i) above) were called m-modes 
and those with wave speed tending to zero (corresponding to (ii) above) were 
called q-modes. For a fixed large value of R, the decay rate of these modes de- 
creased as the frequency p decreased (Gill 1965, figure 5). When FR became of 
order unity, the character of the modes changed and the decay rate reached its 
minimum value. The modes were then called Z-modes, which are the modes ob- 
tained in the limit as ,8R -+ 0. 

In  this part of the paper the equations for the 1-modes for temporally decaying 
disturbances will be derived. The solutions can be obtained analytically and are 
a special case of solutions given by Burridge & Drazin (1969), who discussed the 
limit aR -+ 0 with a fixed. These solutions were also used by Salwen & Grosch 
(1972) as expansion functions for their numerical work. However, their signifi- 
cance as least-damped disturbances for large Reynolds number has not been 
pointed out. Here the nature of the limit is discussed and the solutions given in 
detail for comparison with the spatially decaying solutions which are calculated 
in part 2 .  
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2. Equations 
The equations for infinitesimal disturbances to the basic flow can be put in 

non-dimensional form by choosing as the respective units of velocity, length and 
density the maximum velocity U of the basic flow, the radius a of the pipe and the 
density p of the fluid. Then the kinematic viscosity v of the fluid is replaced in 
the equations by the reciprocal of the Reynolds number 

R = Ua/v. (2 .1)  

Let (2, Y, 6 )  be cylindrical polar co-ordinates such that Y = 0 represents the centre- 
line of the pipe and x increases in the downstream direction, and let t be the time. 
Then the basic Poiseuille flow has velocity components 

(1 - r2,0,0); 

the perturbation velocity is assumed to have the form 

[u(r), i v ( r ) ,  w(r)] exp (in0 +im - ipt) 

p(r)  exp (in0 + im - i,@t). 
and the perturbation pressure to be 

The equations satisfied by u, v, w and p are then 

V f  n2+1 2n 
[a(i  - r2) -/3] = p‘ - iR-l [v f f  +r - ( a2 + 12) - F w ]  , 

n n2+ 1 
r 

[a(1-r2)-P]w=--p-iR-l  

v n  
r r  

and au+v’+-+-w = 0. 

3. Temporarily damped non-axisymmetric Z-modes 
The problem for temporally damped disturbances is to find the complex eigen- 

values ,8 for (2.5)-(2.8) as functions of the real parameters a, n and R. The 
Z-mode corresponds to the limit in which R + 00, aR + 0 but for which PR 
tends to a finite value. The equations satisfied in this limit for n =I= 0 are obtained 
by applying the limiting process to (2.5)-(2.8) keeping au, v, wand R p  finite. The 

resulting equations are uf n2 
uff+---  u + i pR~ .  = 0, 

r r2 (3.1) 

(3 .2)  

(3 .3)  

(3 .4)  

vf n2+1 2n 
r r2 r2 

w’ n2+1 2n in 
r r2 r2 r 

v”+--- v + i , @ R ~ - - ~ + i R p ’  z= 0, 

W’f + - -- W+~PRW--V--RP = 0, 

au+v’+-+-w = 0. 
v n  
r r  

7-2 
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The boundary condition at  r = 0 (see Batchelor & Gill 1962, equations (2.9)- 
(2.11)) is 

u=p=vv+w=O if n = l ,  

u = p = v = w = 0 otherwise. 
(3.5) 

There are three solutions satisfying these conditions, namely 

(i) au = 0, v = rn-1, w = - yn-1 , np = -Prn, (3.6) 

(ii) au = 0, v = nJ,(pr)/pr, w = - JA(pr), p = 0, (3.7) 

(iii) au = pJn(,ur), v = J;(pr), w = -nJn(,ur)/pr, p = 0: (3.8) 

where p2 = i$R. (3.9) 

Prom these, there are two linear combinations which satisfy the no-slip 
condition at r = 1 (cf. Burridge & Drazin 1969). The first solution is 

with 

wherej,,t denotes the Zth zero of the Bessel function J,. The least-damped solu- 
tion of this type occurs for n = 1,Z = 1. From (2.4) the decay rate is -/Ii, where 
pi is the imaginary part of P, and in this instance is given by 

-P,R =j:,1 M 14.7. (3.12) 

The second solution satisfying the no-slip condition is given by 

with 

(3.13) 

(3.14) 

au = 0, 

V + W  = Jn+l(pr), 
v - w = J,-l(pr) - rn-lJn-l(p), 

p =j,+1,, (Z = 1, 2, 3, ... 1. 
The least-damped mode of this type occurs for n = 1, 1 = 1 and has a decay rate 
-pi given (Sex1 1927, p. 842; Davey & Drazin 1969, p. 216) by 

-P,R =ji,1 z 26.4. (3.15) 

This mode decays more quickly than the one found above. 

4. Temporally damped axisymmetric I-modes 
The determination of the limiting solution in the axisymmetric case (n = 0 )  is 

somewhat different because solution (3.6) is not valid when n = 0, and does not 
satisfy the boundary condition 

v=w=O at r = 0 .  (4.1) 

However, there is a simplification in that (2.7) becomes an equation for w alone 
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while (2.5), (2.6) and (2.8) donot involve w. Thus the equation for w and the equa- 
tions for u, v and p can be solved independently. 

First consider the equation for w. In the limit, this becomes (3.3) with n = 0, 
and the solution is (3.7) with n = 0; that is, apart from a constant factor, 

u = v = p = 0, w = JI (pr ) .  (4.2) 

p = j l , l  (1 = 1,2,3, ...), (4.3) 

The no-slip condition requires 

a special case of (3.14). The least-damped mode corresponds to E = 1, when the 
damping rate -pi is given by 

-P,R =j;,l w 14.7. (4.4) 

This mode has exactly the same damping rate as the least-damped non-axisym- 
metric-mode, and these modes share the honour of being the temporally damped 
disturbance with the smallest damping rate. 

Now consider the equations for u, v and p .  One limiting solution satisfies 
(3.1), (3.2) and (3.4) and has been found already, being given by (3.8), that is, 

The other solution has a different character in that instead of p being of order 
R-l as before, it is much larger, being of order /3/a2. Equations (2.5), (2.6) and 
(2.8) now become in the limit 

- pu = - ap, (4.6) 

0 = p’, (4.7) 

au+v’+v/r = 0. (4.8) 

Note that no viscous terms are involved, so that these are a limiting form of the 
inviscid equations. The solution is 

au = -1, v = +r, a2p = -p. (4-9) 

The linear combination of (4.5) and (4.9) which satisfies the no-slip condition 
a t r  = 1is 

i.e. 

i.e. 

J 2 ( l u )  = 02 

p =j2,r  ( I  = 1,2,3,  ...). 

(4.10) 

(4.11) 

The least-damped solution of this type occurs for 1 = 1, when the decay rate 
-Pi is given by (3.15); that is, a larger value than for two of the other modes 
found. Dr A. Davey (private communication) has obtained numerical results 
for this mode for a range of finite values ofaR.  As aR increases from zero, so does 
-pi R, showing that the value given by (3.15) is a minimum value. 
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FIGURE 1. The variation of angular velocity w/r about the axis w-ith distance 5- from the 
axis for the least-damped temporal (solid line) and spatial (broken line) axisymmetric 
disturbances (2-modes). 

FIGURE 2. Contours of axial velocity u for the non-axisymmetric temporally decaying 
disturbance (I-mode) with the smallest decay rate. The maximum value of u is 4.16 and 
the gradient of u at the origin is 13.7. 

5. Discussion for temporally decaying disturbances 
The significance of the least-damped disturbances is that, if stimulated, they 

will be the last vestiges of a general decaying disturbance to be seen after a long 
time. They are not particularly relevant to the finite amplitude problem (Davey 
& Nguyen 1971). Figures 1 and 2 show the properties of the least-damped dis- 
turbance. The axisymmetric mode is shown in figure 1. This has motion only in 
the azimuthal direction, and figure 1 shows how the angular velocity about the 
axis varies with distance from the axis. From (4.2), the angular velocity is pro- 

(5.1) 
portional to 

wlr = 2 J l ( P ) / P  = J d P )  +JdW)> 
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where P, =A,r 
The least-damped non-axisymmetric mode is given by (3.10). All three velo- 

city components are involved, but v and w are of order a relative to u so may be 
neglected. Also, since a -+ 0, the variations in the axial direction are very slow. 
Thus, at any section, the disturbance will appear to consist only of a perturbation 
to the axial velocity of the form [see (2.3) and (3.10)] 

Jl(j1,l  r )  COS 6. (5 .2)  

Contours of this function (multiplied by a convenient constant) are shown in 
figure 2. 

The decay rate of both of these modes is, in non-dimensional terms, 14-7R-l. 
Since the time scale used is a/U and R = Ualv, the dimensional decay rate is 

1 4. 7v/a2. (5.3) 

This is of the order of the time for viscous effects to diffuse across the pipe, and is 
independent of U ,  the velocity of the basic flow. In fact, the limiting equations 
(3.1)-(3.4) for the I-mode do not depend on the basic flow at all. Theaboveequa- 
tions also describe the decay of large wavelength disturbances in a circular pipe 
with no basic flow. 

Similar remarks could be made for the case of temporally decaying disturbances 
to Couette flow between parallel planes. The structure of the 1-mode does not 
depend on the basic flow and the smallest growth rate, in dimensional terms, is 

4m2v/d2, (5.4) 

where d is the distance between the two planes which contain the flow. The dis- 
turbance velocity for this mode is almost parallel to the walls and has a sinusoidal 
variation with distance from the walls, withnodes at  the two walls and at the mid- 
plane (i.e. one full wavelength between the two walls). This limiting solution mas 
found by Hopf (1914, pp. 12, 13) and confirmed by Southwell & Chitty (1930) 
and by Gallagher & Mercer (1962). The numerical results of the latter show (in 
their table 2) that (5.4) does not quite give the smallest decay rate, values about 
3 % lower being obtained at a finite value of aR. It is possible, therefore, that the 
smallest decay rates for the pipe could be lower than the values obtained for the 
Z-modes by a similar factor. However, Davey has found (see $4) that the 1-mode 
does have the lowest decay rate in at least one case. 

It may be appropriate to add a speculative remark here. Attempts to prove 
stability rigorously often involve comparison with an equation of the same order. 
The equations for the 1-mode may be appropriate for such a comparison because 
they are associated with a disturbance whose decay rate is close to, or equal to: 
the minimum value. 

Part 2. Spatially decaying disturbances 
6. Spatially damped non-axisymmetric I-modes 

Garg & Rouleau (1972) have made extensive calculations of the properties 
of spatially decaying disturbances for Reynolds numbers up to 10000 for azi- 
muthal wavenumbers n = 0 , 1 , 2  and 3 and for frequencies /3 between 0.1 and 1. 
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For a given mode at  a fixed frequency the decay rate at decreased as R -+ co. 
However, for fixed R, the decay rate also decreased as ,8 decreased, and was still 
decreasing at the smallest value of p considered by Garg & Rouleau. In the 
particular case of axisymmetric disturbances (n = 0), Gill (1965) found by an 
approximate analysis that the least-damped disturbances were 1-modes, i.e. 
the modes obtained asymptotically in the limit as /3R --f 0 while R + co. This 
result was confirmed by results obtained numerically by Davey & Drazin ( 1969). 
The purpose of this part of the paper is to find the 1-modes for non-axisymmetric 
as well as axisymmetric disturbances in the belief that these will be the modes 
with decay rates equal or close to the smallest possible values. 

The problem for spatially damped disturbances is to find the complex eigen- 
values a for (2.5)-(2.8) as functions of the real parameters /3, n and R. The 
1-mode corresponds to the limit in which R -+ co, ,8R -+ 0 but for which aR tends 
to a finite value. The equations satisfied in this limit for n =+ 0 are obtained by 
applying the limiting process to (2.5)-(2.8) keeping au, v, w and Rp finite. The 
resulting equations are 

u' n2 

r r2 
Un +- - - u-iaR(1-r2)u+2iRrv = 0, (6.1) 

V'I 2n 
r r2 r2 

v"+-- n2+1v-iaR(1-r2)v-- - w+iRp' = 0, 

Wf 2n in 
r r2 r2 r 

WI' +- - n2f1w-iiaR(1-r2)w--v--Rp - = 0, 

au+v'+-+-w v n  = 0. 
r r  

The boundary condition a t  r = 0 is (3 .5 ) .  
The solutions satisfying (3.5) can be expanded as power series of the form 

m 

n a = l  
au = 2 Am(,ur)n+2m-2, 

v = C Bm(pr)n+2m-3, 
00 

m = l  

where 

m 

m = l  
w = C,(,~r)"+2~--3, 

p2  = -iaR. 

Substitution in (6 .  I )  and (6 .4 )  yield respectively 

4m(m + n) A,+1 + A, - E ~ A , - ~  = 2e2Bm, 

(2m+n)Bm+,+nCm+,+A, = 0, 

where €2 = I/p? 

(6.9) 

(6 .10)  

(6 .11)  

The remaining two equations (6.2) and (6 .3 )  yield, on elimination of the pressure, 

4 ( m  - 1) (m +n - 1) [nB,,, + ( 2 m  +n) C,,,] 

+ n(B, - e2B,-,) + (2m + n - 2 )  (C, - E~C, -~ )  = 0. (6.13) 
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A program was written to calculate the coefficients A,, B, and C, and hence, 
by (6.5)-(6.7), the (complex) values of u, v and w at r = 1 for the three cases 

(6.13) i A ,  = I,  Bl = -CIS 0, D = 0, 

A, = 0, B, = -C,= 1, D = 0, 

A1 = 0, B1= -C, = 0, D = 1, 

where D = B, + C,. The modulus of the determinant of the three solutions was 
then calculated as a function of the complex number pa.  The value which made 
the determinant zero was found by interpolation, first from a course grid and 
then from a fine grid of values near the zero as estimated by the first interpola- 
tion. The program was checked by first running it with E = 0 in (6.9), (6.10) and 
(6.12), which gives the temporally damped solutions found analytically in the 
first section. [This can be seen by comparing (3.1)-(3.4) with (6.1)-(6.4).] 

For n = 1, the least-damped disturbance found in this way had a given by 

ER = 10.82 + 28.6%. (6.14) 

For n = 2,  the least-damped disturbance had cc given by 

aR = 17-77 + 49.883. (6.15) 

For n = 3, the smallest damping rate had cti R > 80. 

7. Spatially damped axisymmetric Z-modes 
The determination of the limiting solution in the axisymmetric case follows 

the same lines as for the temporally damped disturbances. There are two in- 
dependent solutions, one involving w alone (u = w = 0 )  and one involving only 
u, v and p (w = 0). 

First consider the equation for w. In the limit, this becomes (6.3) with n = 0. 
The solution has the form (6.7) with Cl = 0, and the coefficients C, can be calcu- 
lated from (6.12) for n = 0. In  this case, values of p 2  are real and the smallest 
damping rate a, is given by 

The power-series solution is 
(7.1) tli R = 21.38. 

w = r - 2-673r3 + 3-272r5 - 2.648r7 + 1-582r9 - 0.754r11 + 0-297r13 

- 0.lOOrl5 + 0.030r1' - 0-008r19 + 0-002rZ1. (7.2) 

This solution is shown in figure 1 for comparison with the corresponding tempor- 
ally damped mode. 

Now consider the equations for u, w and p .  One limiting solution satisfies 
(6.1), (6.2) and (6.4) and is given by (6.5) and (6.6) with A, = 1 and B, = 0. This 
solution was found using (6.9) and (6.10). The other solution is the inviscid solu- 
tion for which p is of order l/cc in the limit. In  this limit, (2 .5) ,  (2 .6)  and (2.8) 
become 

a(1-r2)u-2rv = -ctp, (7.3) 

0 = $Ir, (7.4) 

ccu+v'+v/r = 0, (7.5) 
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FIGURE 3. Contours of axial velocity u for the non-axisymmetric spatially decaying dis- 
turbance (E-mode) with the smallest decay rate. The maximum value of u is 3-46 and t,he 
gradient of u at the origin is 13.7 (i.e. the same as in figure 2). 

and the solution is 
a u = - l ,  v=+r ,  a p = - l .  (7.6) 

The values of ,u [see (6.8)] which allow the no-slip condition at r = 1 to be 
satisfied are real, and were calculated by Gill (1965). The least-damped distJur- 
bance of this type has damping rate ai given by 

aiR = 32.08. (7.7)  

Dr A. Davey (private communication) has obtained numerical results for this 
case for finite values of PR. ai R increases as PR increases from zero, confirming 
that (7.7) gives the lowest damping rate in this case. 

8. Discussion 
It is more common for disturbances in a pipe to decay in space rather than in 

time, so perhaps the spatially damped modes are useful in describing the last 
vestiges of a decaying disturbance. The least-damped mode is the axisymmetric 
one with only an azimuthal component of velocity, and this is depicted in figure 1.  

The least-damped non-axisymmetric mode decays at a rate which is 34 yo 
greater. All three velocity components are involved, but v and w are of order a 
relative to u and so may be neglected. Also, since a+ 0, the variations in the 
axial direction are very slow. Thus, at any section, the disturbance will appear 
bo consist only of a perturbation to the axial velocity of the form [see (2.3)] 

U.,(T) cos 0 - ui(v) sin 8, (8.1) 
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where i b T  and ui are the real and imaginary parts of u(r). Contours of this function 
for the least-damped mode are shown in figure 3. 

The smallest decay rate (i.e. for the axisymmetric mode) is, in non-dimensional 
terms, 21-4R-l. Since the space scale used is u and R = Ua/v, the dimensional 
decay rate is 

This is of the order of the distance for viscous effects to diffuse across the pipe 
when the advection velocity is of order U .  It corresponds, for instance, to decay 
with time at the rate given by (5.3) when there is advection at  a uniform velocity 
of 0.69 u. 

Thus, to summarize, modes have been found in a certain limit which have 
decay rates given by (5.3) for decay with time, or by (8.2) for decay with distance. 
These are thought to have, for a given large Reynolds number, the smallest decay 
rates possible. 

2 1*4v/ Ua2. (8.2) 
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